

WIMP search with the full PandaX-II exposure

Dan Zhang

University of Maryland, College Park On behalf of the PandaX collaboration

Outline

- Introduction to dark matter and PandaX
- WIMP search with PandaX-II full exposure data
 - Refined algorithms in the analysis
 - Unblinding data and results of the WIMP search
- Summary

Introduction to dark matter

1930s, F. Zwicky

Galaxy rotation curve

Gravitational lensing

CMB anisotropy

Bullet cluster

Dark matter candidates

8/20/20

Detectability

 $\chi + SM \longrightarrow \chi' + SM'$

PandaX Collaboration

- Particle and Astrophysical Xenon Experiment
 - Formed in 2009

China Jinping Underground Laboratory

- Deepest (6800 m.w.e): < 0.2 muons/m²/day
- Horizontal access: 9 km long tunnel
- CJPL-II: new experiment halls

Kick-off of CJPL-II facility construction project, July 20, 2019

D.Zhang

PandaX Dark Matter Experiment

- Dual-phase Xenon TPC
- Origin of an event
 - Nuclear recoils (NR): neutron, WIMPs
 - Electron recoils (ER): gamma, beta
 - Alpha particles
- Energy deposition
 - Excitation, Ionization, Heat
- Signals
 - Prompt light S1 ($\sum_{i=1}^{N_{\text{PMT}}} S1_i$)
 - Electroluminance S2^{*i*=1} ($\sum_{i=1}^{N_{\text{PMT}}} s_{2_i}$)
- Events of interest for WIMP search
 - Single scattering NR with one S1 and S2 in 0-10 keV_{ee}

Х

PandaX Dark Matter Experiment

PandaX-I: 120 kg 2009-2014 PandaX-II: 580 kg 2014-2019 **PandaX-4T:** 4 ton 2019-

PandaX-II Full Exposure Data

- 2019.06 "End-of-Run" completed
- Total exposure: 131.7 ton-day
 - Run 9: 79.6 days (published)
 - Run 10: 77.1 days (published)
 - Run 11, span 1: 96.4 days
 - Run 11, span 2: 147.9 days
- Refined algorithms
 - New position reconstruction
 - New detector response model
 - Improved background evaluation

New Position Reconstruction

- Trained with evenly distributed ^{83m}Kr calibration events
- Turn off 7 malfunctioned PMTs
 - 5 top and 2 bottom •
- Simulation-based position reconstruction
 - Optical simulation of the detector
 - A better construction of photon-response function for each PMT •

-300 - 200 - 100

0

300 - **Old**

200

100⁻ [uuu] J

-100

-200

-300

Liquid-in

New Response Model

- Calibration data
 - ER events: tritium and ²²⁰Rn
 - NR events: AmBe
- NEST 2.0 based response model
 - with data quality cut efficiency

ER Run 9 ER Run 10/11 NR Run 9 NR Run 10/11

Background Sources

Source	Evaluation				
¹²⁷ Xe	35.5 day lifetime, decay away in Run 11				
³ H	Introduced after Run 9, fitted from data, see later				
²²² Rn	Depletion effect from measurement				
⁸⁵ Kr	Not a constant due to air leakage in Run 11				
neutrons	Data-driven estimation				
surface events	Data-driven extrapolation				
accidental events	Newly trained BDT discriminator				

²²²Rn Background

- Major ER contribution from ²¹⁴Pb
 - Charged Rn progenies attracted to the cathode with negative HV
 - Less contribution in fiducial volume: "depletion effect"
- New method to evaluate ER event rate from ²¹⁴Pb
 - The depletion ratio measured from ²²²Rn calibration (end-of-run)
 - Interpolation from ²¹⁸Po and ²¹⁴Bi
- PandaX-II ²¹⁴Pb level: 10µBq/kg

Surface Background

- Surface events
 - Mostly ER events from Rn plate-out
 - Losing S2 on the surface, shifting below ER region
- Data-driven extrapolation from outside FV region

⁴ ^{3.5} ^{3.5} ^{2.5} ^{1.5} ^{0.5} ⁰

JINST 14 (10): C10039, 2019

Neutron Background

- New evaluation based on high energy gammas (HEGs)
 - Neutron events associated with HEGs (neutron capture, nuclear de-exciation)
 - Scale factor (neutron events / HEGs) from MC simulation with HEGs included
 - Tested in AmBe calibration data

Background Budget for Low Energy Events

- Compared with Run 10, more background contributions in Run 11
 - ⁸⁵Kr and tritium

Item		Run 9	Run 10	Run 11, span 1	Run 11, span 2		
	85 Kr	1.19 ± 0.2	0.18 ± 0.05	0.20 ± 0.06	0.40 ± 0.07		
Flat ER	222 Rn	0.19 ± 0.10	0.17 ± 0.02	0.19 ± 0.02	0.19 ± 0.02		
Components	220 Rn	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01		
(mDRU)	${ m ER} \ ({ m material})$	0.20 ± 0.10	0.20 ± 0.10	0.20 ± 0.10	0.20 ± 0.10		
	Solar ν	0.01	0.01	0.01	0.01		
	$^{136}\mathrm{Xe}$	0.0022	0.0022	0.0022	0.0022		
Total flat ER (mDRU)		1.61 ± 0.24	0.57 ± 0.11	0.73 ± 0.08	1.03 ± 0.08		
¹²⁷ Xe (mDRU)		0.14 ± 0.03	0.0069 ± 0.0017	< 0.0001			
3 H (mDRU)		0	0.17				
Neutron (mDRU)		0.0022 ± 0.0011					
Accidental (event/day)		0.014 ± 0.004					
Surface (event/day)		0.041 ± 0.008		0.063 ± 0.0013			

Unblinding data and results of the WIMP search

• WIMP

- NRs, separated from the ER band
- Searching window
 - S1 [3, 45] PE
 - Fiducial volume 329 kg
- Blinded analysis for Run 11
- Total 1220 events, 38 below NR median
 - Consistent with background expectation (best fit with)

	\mathbf{ER}	Accidental	Neutron	Surface	Total	Total
					fitted	observed
Run 9	381.1	2.20	0.77	2.13	387 ± 23	384
Below NR median	2.3	0.46	0.36	2.12	5.3 ± 0.5	4
Run 10	145.6	1.07	0.47	2.66	150 ± 14	143
Below NR median	1.3	0.23	0.22	2.65	4.4 ± 0.6	0
Run 11, span 1	219.4	1.03	0.59	6.23	227 ± 19	224
Below NR median	3.7	0.32	0.32	6.20	10.5 ± 1.1	13
Run 11, span 2	451.0	1.60	0.91	9.68	464 ± 30	469
Below NR median	7.5	0.50	0.49	9.64	18.2 ± 4.2	21
Total	1197.2	5.9	2.72	20.7	1227 ± 51	1220
Below NR median	14.9	1.51	1.39	20.6	38.4 ± 6.0	38

The best fitting of a 400 GeV WIMP

Event Distributions

- Distribution of events with high WIMP hypothesis likelihood (400 GeV)
 - 3 events in Run 9 and 7 events in Run 11

Constraints on WIMP Model

- Spin-independent Interaction
- Exclusion limits on SI
 - 2.0x10⁻⁴⁶ cm² for 15 GeV
 - 2.1x10⁻⁴⁶ cm² for 40 GeV
 - 1.4x10⁻⁴⁵ cm² for 400 GeV

Best-fit for m_c =400 GeV 4.2 events -> s_{cn} =3.2x10⁻⁴⁶ cm² p-value of 0.19 -> 0.92

Thanks for your attention!

Dr. Xiaopeng Zhou will present the searches on solar axions and neutrinos with enhanced magnetic moment.