

Ning Zhou Shanghai Jiao Tong University

ICHEP2020, 2020-07-30

WIMP search result with PandaX-II full exposure data (131.7 ton-day)

Preliminary result of Axion search from low energy ER events

Status of next generation PandaX-4T experiment

PandaX Collaboration

Particle and Astrophysical Xenon Experiment

• Formed in 2009

China Jinping Underground Laboratory

- Deepest (6800 m.w.e): < 0.2 muons/m²/day
- Horizontal access: 9 km long tunnel
- **CJPL-II: new experiment halls**

Kick-off of CJPL-II facility construction project, July 20, 2019

A LAND AND A REAL

PandaX Dark Matter Experiment

Dual-phase Xenon TPC

- Prompt S1 (scintillation)
- Delayed S2 (ionization)
- 3-dimensional position reconstruction
- Electron recoil vs nuclear recoil discrimination

PandaX-I: 120 kg 2009-2014

PandaX-II: 580 kg 2014-2019

PandaX-4T: 4 ton 2019-

PandaX-II Full Exposure Data

*2019.06 "End-of-Run" completed

Total exposure: 131.7 ton-day

- Run 9: 79.6 days (published)
- Run 10: 77.1 days (published)
- Run 11, span 1: 96.3 days
- Run 11, span 2: 147.9 days

Full data analysis

- New position reconstruction
- New detector response model
- Improved background evaluation

Dec.31

2016

Jul.02

2017

1800

1600

200

200

Dec.31

2018

Lifetime [µs]

Run11-2

Jul.02

2018

Run11-

Dec.31

2017

120

100

80

60

40

20

Jan.01

2016

Exposure [ton-day]

End of Run 11 span 2

End of Run 11 span

End of Run 10

Jul.01

2016

New Position Reconstruction

Turn off 7 malfunctioned PMTs

• 5 top and 2 bottom

Simulation-based position reconstruction

Optical simulation of the detector

Trained with evenly distributed ^{83m}Kr calibration events

New Response Model

Calibration data

- ER events: tritium and ²²⁰Rn
- NR events: AmBe

Nest 2.0 based response model

• with data quality cut efficiency

ER Run 9 ER Run 10/11 NR Run 9 NR Run 10/11

²²⁰Rn

Run10/11

15

20

Background Sources

**

Source	Evaluation		
¹²⁷ Xe	35.5 day lifetime, decay away in Run 11		
³ Н	Introduced after Run 9, fitted from data, see later		
²²² Rn	Depletion effect from measurement		
⁸⁵ Kr	Not a constant due to air leakage in Run 11		
neutrons	Data-driven estimation		
surface events	Data-driven extrapolation		
accidental events	Newly trained BDT discriminator		

²²²Rn Background

Major ER contribution from ²¹⁴Pb

- Charged Rn progenies attracted to the cathode with negative HV
- Less contribution in fiducial volume: "depletion effect"

New method to evaluate ER event rate from ²¹⁴Pb

- Interpolation from ²¹⁸Po and ²¹⁴Bi
- The depletion ratio measured from ²²²Rn calibration (end-of-run)

PandaX-II ²¹⁴Pb level: 10µBq/kg

Surface Background

***Surface events**

- Mostly ER events from Rn plate-out
- Losing S2 on the surface, shifting below ER region
- Data-driven extrapolation from outside FV region

Neutron Background

New evaluation based on high energy gammas (HEGs)

- Neutron events associated with HEGs (neutron capture, nuclear de-exciation)
- Scale factor (neutron events / HEGs) from MC simulation with HEGs included
- Tested in AmBe calibration data

PandaX-II full exposure: 3.0±1.5 events in WIMP signal region

SCIENCE CHINA Physics, Mechanics & Astronomy(2019)

Background Budget for Low Energy Events

- Compared with Run 10, more background contributions in Run 11
 - ⁸⁵Kr and tritium

						51		
	Preliminary Item 85Kr		Run 9 Run 10		Run 11, span 1	Run 11, span 2		
P	relin	$^{85}\mathrm{Kr}$	1.19 ± 0.2	0.18 ± 0.05	0.20 ± 0.06	0.40 ± 0.07		
		222 Rn	0.19 ± 0.10	0.17 ± 0.02	0.19 ± 0.02	0.19 ± 0.02		
	Flat ER	220 Rn	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01		
	(mDRU)	ER (material)	0.20 ± 0.10	0.20 ± 0.10	0.20 ± 0.10	0.20 ± 0.10		
		Solar ν	0.01	0.01	0.01	0.01		
		$^{136}\mathrm{Xe}$	0.0022	0.0022	0.0022	0.0022		
2	Total flat ER (mDRU) ¹²⁷ Xe (mDRU)		1.61 ± 0.24	0.57 ± 0.11	0.61 ± 0.12	0.81 ± 0.12		
0			0.14 ± 0.03	0.0069 ± 0.0017	< 0.0001			
5	$^{3}\mathrm{H}$	(mDRU)	0	0.17				
5	Neutro	on (mDRU)	0.0022 ± 0.0011					
2	Accident	al (event/day)	0.014 ± 0.004					
5	Surface	e (event/day)	0.04	1 ± 0.008	0.063 ± 0.0013			
-								

WIMP Search

SHITTER THE PARTY OF THE PARTY

***S1** [3, 45] PE and Fiducial volume 329 kg

*****Blinded analysis for Run 11

Total 1220 events, 38 below NR median

Consistent with background expectation

preliminary	ER	Accidental	Neutron	Surface	Total fitted	Total observed
Run 9	381.1	2.20	0.77	2.13	387 ± 23	384
Below NR median	2.3	0.46	0.36	2.12	5.3 ± 0.5	4
Run 10	145.6	1.07	0.47	2.66	150 ± 14	143
Below NR median	1.3	0.23	0.22	2.65	4.4 ± 0.6	0
Run 11, span 1	219.4	1.03	0.59	6.23	227 ± 19	224
Below NR median	3.7	0.32	0.32	6.20	10.5 ± 1.1	13
Run 11, span 2	451.0	1.60	0.91	9.68	464 ± 30	469
Below NR median	7.5	0.50	0.49	9.64	18.2 ± 4.2	21
Total	1197.2	5.9	2.72	20.7	1227 ± 51	1220
Below NR median	14.9	1.51	1.39	20.6	38.4 ± 6.0	38

Event Distributions

Distribution of events with high WIMP hypothesis likelihood

Constraints on WIMP Model

SHATTER STATE

Spin-independent Interaction

Exclusion limits on SI

- 2.1x10⁻⁴⁶ cm² for 40 GeV
- 1.4x10⁻⁴⁵ cm² for 400 GeV

Will submit tomorrow

Best-fit for m_c =400 GeV 4.2 events -> $\sigma_{\chi n}$ =3.2x10⁻⁴⁶ cm² p-value of 0.19 -> 0.92 σ

Axion Search

*****Axion signal in xenon detector: low energy ER events

With full exposure

- Expand the energy window to 25 keV
- Reduce the FV to 250 kg

*****Dominant background: Spectrum fitting to the data

- ¹²⁷Xe: decay away in Run 11
- Flat ER: ⁸⁵Kr, ²²²Rn, materials
- Tritium: appearing since Run 10

Critical background spectra obtained from calibration

WITH THE TONG THE TONG

Background Spectrum

Tritium spectrum

- Two injection calibrations
- T1(Right after Run 9) and T2 (End of run)

***Flat ER spectrum**

• Estimated from ²²⁰Rn calibration after Run 10

*****Systematic uncertainty

- Detector response model parameters
- Non-linearity of data-taking baseline suppression
- Theoretical uncertainty

Energy [keV]

Tritium Background

No direct measurement

Unbinned likelihood fit on Run 10, 11-1, 11-2 independently

Run	Tritium level
10	0.044±0.008 μ Bq/kg
11-1	0.050±0.010 μ Bq/kg
11-2	0.050±0.009 μ Bq/kg

Consistent with a constant rate

• Total fitted 0.049±0.005 μ Bq/kg

Background-only Fit

- Fit the data energy spectrum with tritium contribution floating
- Total data 2200 events

Estimated background 2209.3±46.3

• Consistent with data within 1σ

Events	Run 9	Run 10	Run 11-1	Run 11-2
127 Xe	81.2	3.7	0	0
$\operatorname{tritium}$	0	60.4	73.3	113.9
accidental	1.3	0.6	0.6	1.0
neutron	0.6	0.4	0.5	0.7
¹³⁶ Xe	2.6	2.5	3.1	4.9
flat ER	574.5	196.6	325.3	761.7
Total	660.2 ± 23.5	264.2 ± 14.8	402.8 ± 19.4	882.1 ± 31.6
Data	658	259	401	882

Background plus Signal Fit

With tritium and axion contribution floating

- Degeneracy confirmed due to similar shapes
- No significant best-fit signal yield

Similar fitting quality to bkgd-only fit

• Indicating limited sensitivity from our data

Analysis is work-in-progress

New Experimental Hall at CJPL-II

A general facility containing an ultrapure water shield of 4500 m³ to host large scale DM and 0v2β experiments

PandaX-4T E

- *****4-ton liquid xenon in sensitive volume
- ***Drift region: 1.2m(H) x 1.2m(D)**
- *****3-in PMTs, 169 top/199 bottom
- 1-in veto PMT 126

Expected Sensitivity

*****6-ton-year: expecting **10x** more sensitive than PandaX-II

***1-ton-year: definitive test of the XENON1T low energy ER result**

Under Construction

Summary and Outlook

- PandaX-II has completed successfully in 2019
- PandaX-4T experiment, x10 more sensitive than PandaX-II, is the next generation
- Temporary infrastructure construction in B2 hall of CJPL-II recently completed
- **Onsite detector assembly is work-in-progress**
- Expected commissioning of PandaX-4T: end of 2020
- **Stay tuned!**

Thank You!

Backup

					Turning .
Post-unblinding cut	Cut	Run 9	$\operatorname{Run}10$	Run 11	
	All triggers	24502402	18369083	49885025	
*	Single S2 cut	9806452	6731811	20896629	10/10/18
	Quality cut	331996	543393	2708838	
	DM search window	76036	74829	257111	
	FV cut	392	145	710	
	BDT cut	384	143	695	
	Post-unblinding cuts	384	143	693	
2nd S2 wrongly identified as multiple	0.5	oise pickup		due to cohe	
0 -1 -2 -2 -2 -3 -4 -4 -4 -5 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	2 100 57200 5730X + + + + ×10 ³	S1	22000 23000 240 Sample [10 n	00 25000 26000	27000 28000

Light Yield and Charge Yield

Fitted from our calibration events Consistent with world data

