

# First DM Search Result from the PandaX-II 500kg LXe Detector

Xiangdong Ji Shanghai Jiao Tong U. and UMD On Behalf of the PANDAX Collaboration IDM2016, Sheffield, UK July, 21, 2016

#### PandaX collaboration



#### Started in 2009

- Shanghai Jiao Tong University (2009-)
- Peking University (2009-)
- Shandong University (2009-)
- Shanghai Institute of Applied Physics, CAS (2009-)
- University of Science & Technology of China (2015-)
- China Institute of Atomic Energy (2015-)
- Sun Yat-Sen University (2015-)
- Yalong Hydropower Company (2009-)
- University of Maryland (2009-)
- Alternative Energies & Atomic Energy Commission(2015-)
- University of Zaragoza(2015-)
- Suranaree University of Technology(2015-)

#### China Jinping Underground Laboratory

Deepest in the world ( 1µ/week/m<sup>2</sup>) and Horizontal access!





#### PandaX experiment

#### PandaX = Particle and Astrophysical Xenon Experiments



First delivery of PandaX equipment to Jinping lab, Aug. 16, 2012

#### Final Results from PandaX-I





Completed in Oct. 2014, with 54.0 x 80.1 kg-day exposure

Data strongly disfavor all previously reported claims

Competitive upper limits for low mass WIMP in xenon experiments

#### PandaX-II



#### Assembling the detector







2016/7/22

#### Assembling the detector





#### Run history

We had a series of engineering runs in 2015, fixing various problems as we were testing all the components of the setup

Commissioning run (Run 8): Nov. 22 – Dec. 14 (19.1 live-day x 306 kg FV) but with high Kr background (Phys. Rev. D. 39, 122009 (2016))

After a Kr distillation campaign, the detector was refilled. Physics data taking started in Mar. 2016 (Run 9)

#### **Results from PandaX-II Run 8**



■Simple counting analysis based on an expected background of 3.2(0.7) evts and 2 observed evts

□Sizable (x2) difference of using original NEST or tuned NEST to predict DM distribution due to DM acceptance, but within 1σ band

Low mass: competitive with SuperCDMS; high mass: similar exclusion limit as XENON100 225-day

#### Major upgrades in Run 9

| Items          | Status in Run 9                                            |
|----------------|------------------------------------------------------------|
| Krypton level  | Reduced by x10                                             |
| Exposure       | Increased x4 (79.6 vs 19.1 day)                            |
| ER calibration | Now have tritium calibration                               |
| NR calibration | Statistics x6                                              |
| Analysis       | Improved position reconstruction                           |
| Background     | Accidental background suppressed<br>more than x2 using BDT |

#### Configuration of fields



#### Data sets with different fields

| Condition | live time | $E_{\rm drift}$ | $E_{\text{extract}}$ |
|-----------|-----------|-----------------|----------------------|
|           | (day)     | (V/cm)          | (kV/cm)              |
| 1         | 7.76      | 397.3           | 4.56                 |
| 2         | 6.82      | 394.3           | 4.86                 |
| 3         | 1.17      | 391.9           | 5.01                 |
| 4         | 63.85     | 399.3           | 4.56                 |

Mar. 9-Jun 30, in total 79.6 live-day of under slightly different conditions (optimization of drift and extraction fields).

#### **Electron lifetime evolution**



#### Typical single scatter waveform



### Calibration program



Internal/external ER peaks:
 Detector uniformity corrections
 Light/charge collection parameters



■ Low rate AmBe neutron source: ⇒ Simulate DM NR recoil signal

□  $CH_3T$  injection: tritium beta decays ⇒ Simulate gamma background

#### Extracting detector parameters



#### NR calibration



- 162.4 hours of AmBe data taken, with ~3200 low energy single scatter NR events collected
- NR median curve and NR detection efficiency determined

## ER calibration with $CH_3T$



- 18.0 hours of tritium data taken, with ~2800 low energy ER events collected
- **1**4 events leaked below NR median,  $(0.5 \pm 0.1)\%$
- Consistent with Gaussian expectation, 0.55%

### <sup>85</sup>Kr

- Estimated from delayed
  β-γ coincidence analysis
  Uniformly distributed
- Significantly reduced after distillation





#### Low energy background in Run 9



 Events selected with energy <10 keV

 ~2 mDRU on average (15.3 mDRU in Run 8)

Decrease over time due to <sup>127</sup>Xe decay

#### **Final candidates**

Gray: all Red: below NR median Green: below NR median and in FV



 380 total candidates found in the FV
 1 below NR median
 Outside FV, edge events more likely to lose electrons, leading to S2 suppression

#### **Final candidates**



### **Preliminary results**



#### Summary and outlook

- 79.6 live-day of dark matter data were taken with much reduced background compared to the commissioning run (15 -> 2 mDRU)
- Extensive calibration studies with neutron and tritium
- In combination with commissioning run (19.1 day),
  ~3.32×10<sup>4</sup> kg-day exposure in total
- Analysis will be published officially soon.

#### Xenon experiments comparison

| Experiments         | FV (kg) | Total exposure<br>(kg-day) | Background<br>level (mDRU) |
|---------------------|---------|----------------------------|----------------------------|
| XENON100<br>100 day | 48      | 4843                       | 22                         |
| XENON100<br>225 day | 34      | 7650                       | 5                          |
| LUX 2015            | 147     | 14000                      | 3                          |
| PandaX-I            | 54      | 4325                       | 23.6                       |
| PandaX-II (run8)    | 306     | 5845                       | 15.3                       |
| PandaX-II (run9)    | ~300    | ~24000                     | ~2                         |
| PandaX-II run8+9    | ~300    | 33200                      | 2-15                       |